Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 59(6): 982-993, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29559521

RESUMO

Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Quimera , Colesterol/metabolismo , Lipoproteínas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Atorvastatina/farmacologia , Ácido Quenodesoxicólico/farmacologia , Colesterol/sangue , Humanos , Lipoproteínas/sangue , Fígado/citologia , Masculino , Camundongos
2.
Cell Rep ; 21(6): 1600-1612, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117564

RESUMO

Interferon-regulatory factors (IRFs) are a family of transcription factors (TFs) that translate viral recognition into antiviral responses, including type I interferon (IFN) production. Dengue virus (DENV) and other clinically important flaviviruses are suppressed by type I IFN. While mice lacking the type I IFN receptor (Ifnar1-/-) succumb to DENV infection, we found that mice deficient in three transcription factors controlling type I IFN production (Irf3-/-Irf5-/-Irf7-/- triple knockout [TKO]) survive DENV challenge. DENV infection of TKO mice resulted in minimal type I IFN production but a robust type II IFN (IFN-γ) response. Using loss-of-function approaches for various molecules, we demonstrate that the IRF-3-, IRF-5-, IRF-7-independent pathway predominantly utilizes IFN-γ and, to a lesser degree, type I IFNs. This pathway signals via IRF-1 to stimulate interleukin-12 (IL-12) production and IFN-γ response. These results reveal a key antiviral role for IRF-1 by activating both type I and II IFN responses during DENV infection.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/patologia , Farmacorresistência Viral , Fator Regulador 1 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Animais , Anticorpos/imunologia , Antivirais/uso terapêutico , Células Cultivadas , Dengue/mortalidade , Dengue/veterinária , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Regulação para Baixo , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais , Baço/citologia , Baço/metabolismo , Baço/virologia , Regulação para Cima , Replicação Viral/efeitos dos fármacos
3.
Antiviral Res ; 129: 93-98, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26946111

RESUMO

The antiviral activity of UV-4 was previously demonstrated against dengue virus serotype 2 (DENV2) in multiple mouse models. Herein, step-wise minimal effective dose and therapeutic window of efficacy studies of UV-4B (UV-4 hydrochloride salt) were conducted in an antibody-dependent enhancement (ADE) mouse model of severe DENV2 infection in AG129 mice lacking types I and II interferon receptors. Significant survival benefit was demonstrated with 10-20 mg/kg of UV-4B administered thrice daily (TID) for seven days with initiation of treatment up to 48 h after infection. UV-4B also reduced infectious virus production in in vitro antiviral activity assays against all four DENV serotypes, including clinical isolates. A set of purified enzyme, in vitro, and in vivo studies demonstrated that inhibition of endoplasmic reticulum (ER) α-glucosidases and not the glycosphingolipid pathway appears to be responsible for the antiviral activity of UV-4B against DENV. Along with a comprehensive safety package, these and previously published data provided support for an Investigational New Drug (IND) filing and Phases 1 and 2 clinical trials for UV-4B with an indication of acute dengue disease.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/farmacologia , Dengue Grave/tratamento farmacológico , alfa-Glucosidases/metabolismo , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Animais , Anticorpos Antivirais/sangue , Anticorpos Facilitadores/efeitos dos fármacos , Antivirais/administração & dosagem , Antivirais/uso terapêutico , Células Cultivadas , Chlorocebus aethiops , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Drogas em Investigação , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/enzimologia , Inibidores de Glicosídeo Hidrolases/administração & dosagem , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Humanos , Concentração Inibidora 50 , Camundongos , Monócitos/virologia , Receptores de Interferon/deficiência , Sorogrupo , Dengue Grave/virologia , Células Vero
4.
Sci Rep ; 5: 12616, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26220099

RESUMO

Dengue virus (DENV) is the most important mosquito-borne viral infection in humans. In recent years, the number of cases and outbreaks has dramatically increased worldwide. While vaccines are being developed, none are currently available that provide balanced protection against all DENV serotypes. Advances in human antibody isolation have uncovered DENV neutralizing antibodies (nAbs) that are capable of preventing infection from multiple serotypes. Yet delivering monoclonal antibodies using conventional methods is impractical due to high costs. Engineering novel methods of delivering monoclonal antibodies could tip the scale in the fight against DENV. Here we demonstrate that simple intramuscular delivery by electroporation of synthetic DNA plasmids engineered to express modified human nAbs against multiple DENV serotypes confers protection against DENV disease and prevents antibody-dependent enhancement (ADE) of disease in mice. This synthetic nucleic acid antibody prophylaxis/immunotherapy approach may have important applications in the fight against infectious disease.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Dengue/imunologia , Ácidos Nucleicos/imunologia , Animais , Antígenos Virais/imunologia , Linhagem Celular , Chlorocebus aethiops , Reações Cruzadas/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Humanos , Imunoterapia/métodos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização/métodos , Células Vero , Proteínas do Envelope Viral/imunologia
5.
J Immunol Methods ; 410: 34-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24440090

RESUMO

Dengue virus (DENV) has substantial global impact, with an estimated 390million people infected each year. In spite of this, there is currently no approved DENV-specific vaccine or antiviral. One reason for this is the difficulty involved with development of an adequate animal model. While non-human primates support viral replication, they do not exhibit signs of clinical disease. A mouse model is an ideal alternative; however, wild-type mice are resistant to DENV-induced disease. Infection of interferon receptor-deficient mice results in disease that recapitulates key features of severe dengue disease in humans. For the development of vaccines, interferon receptor-deficient mice provide a stringent model for testing vaccine-induced immune components from vaccinated wild-type mice.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/fisiologia , Dengue/imunologia , Dengue/prevenção & controle , Modelos Animais de Doenças , Replicação Viral/imunologia , Animais , Dengue/genética , Vacinas contra Dengue/genética , Humanos , Interferon gama/genética , Interferon gama/imunologia , Camundongos , Camundongos Mutantes , Replicação Viral/genética
6.
Antiviral Res ; 98(1): 35-43, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23376501

RESUMO

The aim of the present study was to evaluate the ability of the iminosugar drug UV-4 to provide in vivo protection from lethal dengue virus (DENV) challenge. This study utilized a well-described model of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS)-like lethal disease in AG129 mice lacking the type I and II interferon receptors. Herein, we present UV-4 as a potent iminosugar for controlling DENV infection and disease in this mouse model. Specifically, administration of UV-4 reduced mortality, as well as viremia and viral RNA in key tissues, and cytokine storm. In addition, UV-4 treatment can be delayed, and it does not alter the anti-DENV antibody response. These results have set the foundation for development of UV-4 as a DENV-specific antiviral in phase I human clinical trials.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Dengue/virologia , Imino Açúcares/farmacologia , Animais , Antivirais/química , Citocinas , Dengue/imunologia , Vírus da Dengue/fisiologia , Humanos , Imino Açúcares/química , Camundongos , Camundongos Endogâmicos , Relação Estrutura-Atividade
7.
J Mater Chem B ; 1(39): 5256-5263, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263328

RESUMO

Contrast-enhanced magnetic resonance imaging (MRI) allows rapid non-invasive diagnosis of central nervous system (CNS) pathologies such as multiple sclerosis (MS). Current gadolinium-based contrast agents must be administered at high doses, are excreted by the kidney, and some formulations are associated with toxicity in patients with renal insufficiency. The development of nanoparticle carriers for targeted delivery of gadolinium to sites of disease would increase specificity, as well as decrease the dose of gadolinium required to obtain sufficient contrast for disease diagnosis. The plant virus, cowpea mosaic virus (CPMV), is a biocompatible nanoparticle platform for imaging applications. Gadolinium is rapidly incorporated into the interior of the CPMV capsid without disrupting particle integrity, and CPMV-Gd particles have relaxivity comparable to gadolinium chelates used clinically. Here we examine the ability of gadolinium-loaded CPMV particles (CPMV-Gd) to localize to lesions in the CNS in an animal model of MS, experimental autoimmune encephalomyelitis (EAE). The in vivo distribution of gadolinium-loaded CPMV (CPMV-Gd) was examined within the periphery and central nervous system (CNS). CPMV accumulated in inflammatory lesions within the brain and spinal cord, and specifically associated with CD11b+ and CD11c+ cells. These results demonstrate that CPMV is an attractive nanoparticle chelate for gadolinium for in vivo applications and may have clinical utility as a contrast agent for the detection of autoimmune demyelinating diseases of the CNS.

8.
Mol Pharm ; 10(1): 26-32, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22905759

RESUMO

Cowpea mosaic virus (CPMV) has been used as a nanoparticle platform for biomedical applications including vaccine development, in vivo vascular imaging, and tissue-targeted delivery. A better understanding of the mechanisms of CPMV targeting and cell internalization would enable enhanced targeting and more effective delivery. Previous studies showed that, following binding and internalization by mammalian cells, CPMV localizes in a perinuclear late-endosome compartment where it remains for as long as several days. To further investigate endocytic trafficking of CPMV within the cell, we used multiple approaches including pharmacologic inhibition of pathways and colocalization with endocytic vesicle compartments. CPMV internalization was clathrin-independent and utilized a combination of caveolar endocytosis and macropinocytosis pathways for entry. CPMV particles colocalized with Rab5(+) early endosomes to traffic ultimately to a lysosomal compartment. These studies facilitate the further development of effective intracellular drug-delivery strategies using CPMV.


Assuntos
Comovirus/metabolismo , Endocitose/fisiologia , Nanopartículas/administração & dosagem , Animais , Transporte Biológico , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Endossomos/metabolismo , Endossomos/fisiologia , Endossomos/virologia , Células HeLa , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Pinocitose/fisiologia
9.
J Virol ; 86(22): 12138-47, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22933295

RESUMO

Human postmortem studies of natural dengue virus (DENV) infection have reported systemically distributed viral antigen. Although it is widely accepted that DENV infects mononuclear phagocytes, the sequence in which specific tissues and cell types are targeted remains uncharacterized. We previously reported that mice lacking alpha/beta and gamma interferon receptors permit high levels of DENV replication and show signs of systemic disease (T. R. Prestwood et al., J. Virol. 82:8411-8421, 2008). Here we demonstrate that within 6 h, DENV traffics to and replicates in both CD169(+) and SIGN-R1(+) macrophages of the splenic marginal zone or draining lymph node, respectively, following intravenous or intrafootpad inoculation. Subsequently, high levels of replication are detected in F4/80(+) splenic red pulp macrophages and in the bone marrow, lymph nodes, and Peyer's patches. Intravenously inoculated mice begin to succumb to dengue disease 72 h after infection, at which time viral replication occurs systemically, except in lymphoid tissues. In particular, high levels of replication occur in CD68(+) macrophages of the kidneys, heart, thymus, and gastrointestinal tract. Over the course of infection, proportionately large quantities of DENV traffic to the liver and spleen. However, late during infection, viral trafficking to the spleen decreases, while trafficking to the liver, thymus, and kidneys increases. The present study demonstrates that macrophage populations, initially in the spleen and other lymphoid tissues and later in nonlymphoid tissues, are major targets of DENV infection in vivo.


Assuntos
Vírus da Dengue/metabolismo , Dengue/virologia , Macrófagos/citologia , Baço/citologia , Animais , Transporte Biológico , Medula Óssea/virologia , Antígenos CD58/biossíntese , Moléculas de Adesão Celular/biossíntese , Dengue/metabolismo , Imuno-Histoquímica/métodos , Cinética , Lectinas Tipo C/biossíntese , Linfonodos/virologia , Macrófagos/virologia , Camundongos , Nódulos Linfáticos Agregados/virologia , Receptores de Superfície Celular/biossíntese , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/biossíntese , Baço/virologia , Distribuição Tecidual , Replicação Viral
10.
Nanomedicine (Lond) ; 7(6): 877-88, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22394183

RESUMO

AIMS: Detection of atherosclerosis has generally been limited to the late stages of development, after cardiovascular symptoms present or a clinical event occurs. One possibility for early detection is the use of functionalized nanoparticles. The aim of this study was the early imaging of atherosclerosis using nanoparticles with a natural affinity for inflammatory cells in the lesion. MATERIALS & METHODS: We investigated uptake of cowpea mosaic virus by macrophages and foam cells in vitro and correlated this with vimentin expression. We also examined the ability of cowpea mosaic virus to interact with atherosclerotic lesions in a murine model of atherosclerosis. RESULTS & CONCLUSION: We found that uptake of cowpea mosaic virus is increased in areas of atherosclerotic lesion. This correlated with increased surface vimentin in the lesion compared with nonlesion vasculature. In conclusion, cowpea mosaic virus and its vimentin-binding region holds potential for use as a targeting ligand for early atherosclerotic lesions, and as a probe for detecting upregulation of surface vimentin during inflammation.


Assuntos
Aterosclerose/diagnóstico , Comovirus/imunologia , Nanopartículas , Vimentina/imunologia , Animais , Artérias/imunologia , Artérias/patologia , Aterosclerose/imunologia , Aterosclerose/patologia , Linhagem Celular , Células Cultivadas , Comovirus/química , Células Endoteliais/imunologia , Células Endoteliais/patologia , Células Espumosas/imunologia , Células Espumosas/patologia , Lipoproteínas LDL/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Placa Aterosclerótica/diagnóstico , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/patologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-20872839

RESUMO

Current vaccines that provide protection against infectious diseases have primarily relied on attenuated or inactivated pathogens. Virus-like particles (VLPs), comprised of capsid proteins that can initiate an immune response but do not include the genetic material required for replication, promote immunogenicity and have been developed and approved as vaccines in some cases. In addition, many of these VLPs can be used as molecular platforms for genetic fusion or chemical attachment of heterologous antigenic epitopes. This approach has been shown to provide protective immunity against the foreign epitopes in many cases. A variety of VLPs and virus-based nanoparticles are being developed for use as vaccines and epitope platforms. These particles have the potential to increase efficacy of current vaccines as well as treat diseases for which no effective vaccines are available.


Assuntos
Nanomedicina/métodos , Nanopartículas/química , Vacinas Virais/química , Vacinas Virais/imunologia , Vírion/imunologia , Vírus/imunologia , Animais , Humanos , Vírion/química , Vírus/química
12.
PLoS One ; 4(11): e7981, 2009 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-19956734

RESUMO

BACKGROUND: Plant viruses such as Cowpea mosaic virus (CPMV) are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs) of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized. METHODOLOGY: The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer's patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured. CONCLUSIONS: We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer's patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer's patch.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/virologia , Biotecnologia/métodos , Comovirus/metabolismo , Nanopartículas , Nanotecnologia/métodos , Animais , Membrana Celular/metabolismo , Separação Celular , Fibroblastos/metabolismo , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Ligação Proteica , Vimentina/química , Vimentina/metabolismo
13.
PLoS Pathog ; 5(5): e1000417, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19412526

RESUMO

Cowpea mosaic virus (CPMV) is a plant comovirus in the picornavirus superfamily, and is used for a wide variety of biomedical and material science applications. Although its replication is restricted to plants, CPMV binds to and enters mammalian cells, including endothelial cells and particularly tumor neovascular endothelium in vivo. This natural capacity has lead to the use of CPMV as a sensor for intravital imaging of vascular development. Binding of CPMV to endothelial cells occurs via interaction with a 54 kD cell-surface protein, but this protein has not previously been identified. Here we identify the CPMV binding protein as a cell-surface form of the intermediate filament vimentin. The CPMV-vimentin interaction was established using proteomic screens and confirmed by direct interaction of CPMV with purified vimentin, as well as inhibition in a vimentin-knockout cell line. Vimentin and CPMV were also co-localized in vascular endothelium of mouse and rat in vivo. Together these studies indicate that surface vimentin mediates binding and may lead to internalization of CPMV in vivo, establishing surface vimentin as an important vascular endothelial ligand for nanoparticle targeting to tumors. These results also establish vimentin as a ligand for picornaviruses in both the plant and animal kingdoms of life. Since bacterial pathogens and several other classes of viruses also bind to surface vimentin, these studies suggest a common role for surface vimentin in pathogen transmission.


Assuntos
Comovirus/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/virologia , Vimentina/metabolismo , Animais , Aorta/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Cromatografia Líquida , Células HeLa , Humanos , Masculino , Camundongos , Ligação Proteica , Proteômica , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...